electro-active polymer actuators and sensors - types, applications, new developmentS, industry structure and global markets

An electroactive polymer (EAP) is a polymer that exhibits a mechanical response – such as stretching, contracting, or bending, for example – in response to an electric field, or a polymer that produces energy in response to a mechanical stress.
The actuator property of some EAPs has been attractive for a broad range of potential applications, including but not limited to robotic arms, grippers, loudspeakers, active diaphragms, dust wipers, heel strikers (dental) and numerous automotive applications. There are also numerous applications within the medical field, including but not limited to artificial muscles, synthetic limbs or prostheses, wound pumps, active compressing socks, and catheter or other implantable medical device steering elements.
EAP materials have high energy density, rapid response time, customizability (shape and performance characteristics), compactness, easy controllability, low power consumption, high force output and deflections/amount of motion, natural stiffness, combined sensing and actuation functions, relatively low raw materials costs, and relatively inexpensive manufacturing costs.
Electroactive ceramic actuators (for example, piezoelectric and electro-strictive) are effective, compact actuation materials, and they are used to replace electromagnetic motors. While these materials are capable of delivering large forces, they produce a relatively small displacement, on the order of magnitude of a fraction of a percent. 
Since the beginning of the 1990s, new EAP materials have emerged that exhibit large strains, and they have led to a paradigm shift because of their capabilities. The unique properties of these materials are highly attractive for bio-mimetic applications such as biologically inspired intelligent robots. Increasingly, engineers are able to develop EAP-actuated mechanisms that were previously imaginable only in science fiction. Electric motors tend to be too weak, while hydraulics and pneumatics are too heavy for use in robotics or prosthetics. In comparison, EAPs are lightweight, quiet and capable of energy densities similar to biological muscles.
In ionic EAPs, actuation is caused by the displacement of ions inside the polymer. Only a few volts are needed for actuation, but the ionic flow implies a higher electrical power needed for actuation, and energy is needed to keep the actuator at a given position. Examples of EAPS in this area are dielectric elastomers, polymers, ionic polymer metal composites (IPMCs), conductive polymers and responsive gels. 
An EAP actuator not only is completely different from conventional electromechanical devices, but also separates itself from other high-tech approaches that are based on piezoelectric materials or shape-memory alloys by providing a significantly more power-dense package and, in many instances, a smaller footprint.
Electro-active polymer technology could potentially replace common motion-generating mechanisms in positioning, valve control, pump and sensor applications, where designers are seeking quieter, power efficient devices to replace cumbersome conventional electric motors and drive trains. 
This study reports new concepts in mechanism design and digital mechatronics, which have the potential to significantly impact a wide variety of systems and devices, including medical devices, haptic actuators, haptic switches, aperture adjustments in mobile cameras, manufacturing systems, toys and robotics, among others. The survey mainly targets dielectric elastomer actuators, conductive polymers actuators and IMPC actuators as the most likely candidates to act as EAP devices, on the basis of material characteristics, maturity of technology, reliability, and cost to meet design requirements of applications considered.
study goal and objectives
Markets for EAP devices are strongly driven by the expanding medical market, E-textiles and robotics, with its demand for a novel class of electrically controlled actuators based on polymer materials. Almost any laboratory for molecular biology must be equipped with a dextrous robotic gripper. The artificial muscle envisioned is a low-cost actuator capable of being accurately electrically controlled, expanding or contracting linearly, and performing in a manner similar to natural skeletal muscles. Such an actuator has potential applications in areas where flexibility of a moving system goes together with a need for accurate control of the motion: haptic actuators, haptic switches, aperture adjustments in mobile phone cameras, robotics, advanced consumer products like smart fabrics, toys and medical technology. Totally new design principles and novel products for everyday use with a large economic potential can be anticipated.
In addition, new and much larger markets will open up if microfluidic devices using micropumps and microvalves can enter the arena of clinical and point-of-care medicine and even the home diagnostics market. This study focuses on EAP devices, types, applications, new developments, industry and global markets, providing market data about the size and growth of the application segments, including a detailed patent analysis, company profiles and industry trends. Another goal of this report is to provide a detailed and comprehensive multi-client study of the market in North America, Europe, Japan and the rest of the world (ROW) for EAPs and potential business opportunities in the future. 

The objectives include thorough coverage of the underlying economic issues driving the EAP and devices businesses, as well as assessments of new advanced EAPs and devices that are being developed. Another important objective is to provide realistic market data and forecasts for EAPs and devices. This report provides the most thorough and up-to-date assessment that can be found anywhere on the subject. The study also provides extensive quantification of the many important facets of market developments in EAPs and devices all over the world. This, in turn, contributes to the determination of what kinds of strategic responses companies may adopt in order to compete in this dynamic market.

REASONS FOR DOING THE STUDY

EAPs exhibit many qualities that make them ideal for a low-cost actuator capable of being accurately electrically controlled, expanding or contracting linearly, and performing in a manner that resembles the natural skeletal muscles. Such an actuator has potential applications in areas where flexibility of a moving system goes together with a need for accurate control of the motion, such as EAP-based medical devices, advanced consumer products like haptic actuators, aperture adjustments in mobile phone cameras, robotics, smart fabrics, and toys.
Development of EAP fields will benefit companies that use EAP components to add value to products and services, companies skilled in using EAP to design new products and services, and materials processors that add value to raw materials. The small volumes of EAP consumption likely will have little impact on raw materials suppliers. Near-term returns on investment by EAP suppliers generally will be modest, because most EAP fields still are building infrastructure and knowledge bases for efficient and effective production, marketing and use of EAPs. The specialized knowledge necessary to produce EAPs and incorporate those effectively into products will slow the spread of EAP use, but it also has led to high market valuations for companies developing products for high-value applications. 
EAPs also are finding applications in haptics, which provides a tactile feedback technology taking advantage of the sense of touch by applying forces, vibrations, or motions to the user. Haptic feedback interface devices using EAP actuators provide haptic sensations and/or sensing capabilities. A haptic feedback interface device is in communication with a host computer and includes a sensor device that detects the manipulation of the interface device by the user and an EAP actuator responsive to input signals and operative to output a force to the user caused by motion of the actuator. The output force provides a haptic sensation to the user.

Smart structures, which fully integrate structural and mechatronic components, represent the most refined use of EAPs and might eventually enjoy very large markets. Only a very simple EAP-based smart-structure product is in commercial use today. Other important areas of opportunity include applications in which designers are looking for performance improvements or new features but are unwilling to accept the compromises necessary to use conventional mechanisms and products (including non-mechanical devices) that must operate in a variety of conditions but have rigid designs optimized for a single operating point. Though improvements in EAP performance would increase the range of possible applications, the major barriers to widespread EAP use are users' lack of familiarity with the technology, the need for low-cost, robust production processes, and the need for improved design tools to enable non-experts to use the materials with confidence.
Since publishing our last report in 2008, many changes have occurred, including the emergence of new market segments such as haptic sensors and adjustable apertures for cellular phone cameras, new materials and new fabrication processes, new manufacturers and new patents. Therefore, iRAP felt a need to do a detailed technology update and analysis of this industry.
Contributions of the study

The study is intended to benefit existing manufacturers of robotics, advanced consumer products like smart fabrics, toys, and medical technology, who seek to expand revenues and market opportunities through new technology such as low-cost EAPs and devices, which are positioned to become a preferred solution over conventional actuator applications. 
This study also provides the most complete accounting of EAPs and devices growth in North America, Europe, Japan and the rest of the world currently available in a multi-client format. The markets have also been estimated according to the type of materials used, such as dielectric elastomer actuators, conductive polymers and ionic polymer metal composites.

The report provides the most thorough and up-to-date assessment that can be found anywhere on the subject. The study also provides extensive quantification of the many important facets of market developments in the emerging markets of EAPs and devices, such as China. This, in turn, contributes to the determination of what kind of strategic response suppliers may adopt in order to compete in this dynamic market. 

SCOPE AND FORMAT

The market data contained in this report quantify opportunities for EAPs and devices. In addition to product types, the report also covers the many issues concerning the merits and future prospects of the EAP and devices business, including corporate strategies, information technologies, and the means for providing these highly advanced products and service offerings. It also covers in detail the economic and technological issues regarded by many as critical to the industry’s current state of change. The report provides a review of the EAP and devices industry and its structure and the many companies involved in providing these products. The competitive position of the main players in the market and their strategic options are also discussed, as well as such competitive factors as marketing, distribution and operations.

TO WHOM THE STUDY CATERS 

The study will benefit existing manufacturers of EAP-tipped catheters, haptic actuators, aperture adjustment mechanisms in mobile cameras, robotics, advanced consumer products like smart fabrics and toys, and medical technology. EAP materials exhibit large strains, and they led to a paradigm shift based on their capabilities. The unique properties of these materials are highly attractive for biomimetic applications such as biologically inspired intelligent robots.
This study provides a technical overview of EAPs and related devices, especially recent technology developments and existing barriers. Therefore, audiences for this study include marketing executives, business unit managers and other decision makers working in the areas of haptic applications, aperture adjustment mechanisms in mobile cameras, robotics, advanced consumer products like smart fabrics and toys, and medical technology, as well as those in companies peripheral to these businesses.

REPORT SUMMARY
Electroactive polymers are increasingly used in niche actuators and sensor applications demanding large strains as compared to other piezoelectric materials. New applications are emerging in medical devices, haptic actuators, cellular phone cameras, smart fabrics for sensors, digital mecha-tronics and high strain sensors. 
New EAP devices are already replacing some mechanisms that rely on direct or indirect displacement to produce power. Shape-memory alloys contract with a thermal cycle, and piezoelectric technologies expand and contract with voltage at high frequencies. While both these technologies provide direct displacement, they are usually limited to 1% direct displacement. Electromagnetic solutions typically consist of a motor that rotates an output shaft, so there is no direct displacement from the motor itself, but there can be “indirect” displacement from a mechanism connected to the output shaft. 
EAP devices are facing competition in a new rapidly evolving and highly competitive sector of the medical market. Increased competition could result in reduced prices and gross margins for EAP products and could require increased spending on research and development, sales and marketing, and customer support.

This study separated markets for EAP devices and products into six application segments – medical devices, haptic actuators, adjustable apertures for cellular phone cameras, smart fabrics, digital mechatronics, and high-strain sensing instruments for construction.
Major findings of this report:
· Global market for EAP actuators and sensors reached $148 million in 2012. This will increase to $363 million by 2017. 
· Medical devices had the largest market share in 2012 followed by haptic actuators, adjustable apertures for cellular phones, high strain sensing in construction, smart fabrics, and digital mechatronics. 
· While medical devices will continue to maintain the lead in 2017, that sector will see a modest average annual growth rate (AAGR) of 11.8% for the period. Haptic actuators will see maximum growth at an AAGR of 35% from 2012 to 2017. 

· Among the regions, North America has the largest market share with 66% of the market and will be maintained around 60% share till 2017.
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